سرشت نمایی گروههای ساده ی متناهی توسط گراف ناجابجایی وابسته به آن ها

پایان نامه
چکیده

مطالعه ی ساختارهای جبری با استفاده از ویژگیهای گراف، موضوع پژوهشی جالبی در چند دهه ی گذشته بوده است. در این سالها مقالات زیادی چاپ شده است که در آن ها به یک گروه یا یک حلقه (یا در حالت کلی یک ساختار جبری ) یک گراف وابسته شده است. یکی از گرافهای معروف وابسته به یک گروه عبارت است از گراف ناجابجایی که به این صورت تعریف می شود: رئوس این گراف عبارتند از اعضای مجموعه ی اعضای غیرمرکزی و دو رأس مانند x و y به هم وصل می شوند چنانچه x و y با هم جابجا نشوند. بدیهی است که چنانچه g یک گروه آبلی باشد، آنگاه گراف ناجابجایی وابسته به آن تعریف نمی شود. همچنین گراف اول وابسته به یک گروه نیز به این صورت تعریف می شود: رئوس این گراف عبارتند از مقسوم علیه های اول مرتبه ی g و دو رأس مانند p و q به هم وصل می شوند چنانچه g عضوی از مرتبه ی pq داشته باشد. در سال 2006 حدسی به صورت زیر توسط آقایان اکبری، میمنی و عبداللهی ارائه شد: فرض کنیم s یک گروه ساده و g یک گروه دلخواه باشد، اگر گراف های ناجابجایی وابسته به گروههای g و s با هم یکریخت باشد، آنگاه g و s با هم یکریختند. تاکنون اثباتی برای این حدس و یا مثالی در جهت رد این حدس ارائه نشده است. اما این حدس برای همه ی گروههای ساده با گراف اول ناهمبند ثابت شده است. آنچه در این پایان نامه انجام شده، بررسی درست بودن این حدس برای بعضی از گروههای ساده ی متناهی بوده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی گروههای ساده متناهی توسط گراف اول وابسته به آنها

به گروه متناهی g یک گراف ساده موسوم به گراف اول وابسته می شود که آن رابا ?(g می دهیم. در این گراف مجموعه رئوس عبارت است از ?(g یعنی مجموعه اعداد اول شمارنده |g| و دو رأس p و q به هم وصلند هرگاه گروه g عضوی از مرتبه pq داشته باشد. گروه معین g را r-بار شناسایی پذیر به وسیله گراف اول گوییم هرگاه دقیقا r گروه غیریکریخت مانند h وجود داشته باشد به طوری که ?(h)=?(g . در حالت خاص وقتی یک گروه توسط گر...

15 صفحه اول

سرشت نمایی های عددی بعضی از گروههای ساده متناهی

نخست od-سرشت پذیری گروههای ساده متناهی که حداکثر شمارنده اول آنها 17 می باشد و دو گروه l(10, 2) , l(11, 2) و گروه خودریختی های aut(l(p, 2) , aut(l(p+1, 2) که در 2^p-1 یک عدد اول مرسن است دوم بررسی خواص گراف توانی وابسته به یک گروه متناهی و زیرگرافی حاصل از حذف راس متناظ با عنصر همانی که نشان داده میشود که گراف توانی آنها چه زمانی گرافی قویا منظم و دو بخشی و مسطح می باشد و این که چه زمانی زیر...

od-سرشت نمایی گروههای متناهی

فرض کنیم g یک گروه متناهی باشد و نیز فرض کنیم p_1,p_2,..,p_k مام مقسوم علیه های اول مرتبه g باشند کهp_1<p_2<..<p_k.در این صورت گراف اول وابسته به گروه g عبارت است از یک گراف ساده که مجموعه راسهای آن عبارت است از {p_1,...,p_k} و دو راس متمایز p_i و p_j توسط یک یال به هم وصل می باشند اگر و تنها اگر g شامل عنصری از مرتبه p_ip_j باشد. درجه راس دلخواه p_i در این گراف را با( deg(p_i نشان می دهیم و ...

سرشت نمایی گروههای ساده متناهی (l_4(2^m و (u_4(2^m توسط طیف.

برای گروه مفروض g, مجموعه متشکل از مرتبه همه عناصر gرا با( ?(gنشان داده و آن را طیف gمی نامیم. بعلاوه تعداد گروههای غیریکریخت با طیف یکسان همچون طیف g را با نماد( h(gنشان می دهیم. می گوییم گروهgتوسط طیف قابل سزشت نمایی است چنانچه 1=( h(gبه عبارت معادل گروه gتنها گروه متناهی با طیف ( ?(gباشد. در این پایان نامه هدف اصلی ما بررسی سرشت نمایی گروههای ساده متناهی تصویری (l_4(2^m و (u_4(2^m می باشد.

od-سرشت نمایی k-4- گروههای ساده

در این پایان نامه اثبات می کنیم تمام گروههای ساده ای که مرتبه آنها دقیقا توسط چهار عدد اول عاد می شود، بجز گروه ساده a_10 ،توسط مرتبه و الگوی درجه آنها سرشت پذیرند.و این نوع سرشت پذیری را od-سرشت پذیری می نامیم. بعلاوه od-سرشت پذیری گروه ساده (u-3(5 و گروههای وابسته به آن را مد نظر قرار می دهیم و اثبات میکنیم (u-3(5 و 2.(u-3(5 سرشت پذیر هستند در حالی که 3.( u-3(5سه مرتبه od-سرشت پذیر میباشد و د...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023